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Overview

e Stochastic PDE: Re-formulation

* Solution Strategies: generalized polynomial chaos (gPC)

» Application: Epistemic uncertainty analysis




(Re-)Formulation of PDE: Input Parameterization

%(I,x) = L(u) + boundary/initial conditions

* Goal: To characterize the random inputs by a set of random variables
* Finite number
= Mutual independence

* If inputs == parameters
= [dentify the (smallest) independent set
= Prescribe probability distribution

* Else if inputs == fields/processes
= Approximate the field by a function of finite number of RVs
= Well-studied for Gaussian processes
» Under-developed for non-Gaussian processes
= Examples: Karhunen-Loeve expansion, spectral decomposition, etc.

a(x,w)~p (x)+ Z a(x)Z.(w)




The Reformulation

» Stochastic PDE:

%(t,x,Z )=L(u) + boundary/initial conditions

* Solution: u(t,x,Z):[0,T]x DxR"” - R

* Uncertain inputs are characterized by »n, random variables Z

Non-trivial task




Generalized Polynomial Chaos (gPC)

%—?(r,x,Z )=L(u) + boundary/initial conditions
* Focus on dependence on Z: u(+,Z):R” - R

« Nh-order gPC expansion:

N
Uy (1,3,2)2 >0 (6,0)8,(Z), # ofbasis=| ' LR
|k|:O N
* Orthogonal basis: f D,(2)D (Z2)p(Z)dZ =§,

* Properties:
= Rigorous mathematics
» High accuracy, fast convergence
= Curse-of-dimensionality
 Numerical Approaches:
= Galerkin vs. collocation

* Basis functions:
= Hermite polynomials: seminal
work by R. Ghanem
= General orthogonal polynomials
(Xiu & Karniadakis, 2002)




sPC Basis

= Expectation: ]E(g(Z)):fg(z)p(z)dz

= Orthogonality: f D.(2)®,(2)p(2)dz = ]E[(I)i(Z )®.(Z )] =0,

---------------

Gaussian distribution Gamma distribution Beta distribution

o) 00 1
f P,(2)®,(2)e = dz =16, f P,(2)®,(2)e* dz =6, f P,(2)®,(2)dz =,
—00 0 —1

i 3 !

Hermite polynomial Laguerre polynomial Legendre polynomial




gPC Basis: the Choices

= Orthogonality: fCI)i(z)CI)j(z)p(z) dz = E[Cbi(Z)CI)j(Z)] = 5ij

* Example: Hermite polynomial

f ,(2)®,(z)e " dz =6,

* The polynomials: Z~N(0,1) T T
o =1 & =2 o, =2"-1, &, =2"-3Z,

= Approximation of arbitrary random variable: Requires L’ integrability

15

= Example: Uniform random variable
o Convergence "
o Non-optimal
o First-order Legendre 1s exact

05+




Computational Efficiency

® First-order ODE: exponential random input

Error | Monte Carlo Method | Generalized Polynomial Chaos | Speed-up factor
(# of realizations) (# of expansion terms)
4% 100 1 100
1.1% 1,000 2 500
0.05% 9,800 3 3,267
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Stochastic Galerkin

%(t, x,Z)=L(u) + boundary/initial conditions

e Galerkin method: Seek

u, (t,x,Z2) = EN: i, (t,x)® (Z)

|k|:0

Such that

a N
E{%(t,x,Z)(Dm(Z)} =E|L(u,)®,(Z)], V|m|<N

* The result:
= Residue 1s orthogonal to the gPC space
= A set of deterministic equations for the coefficients
= The equations are usually coupled — requires new solver




Stochastic Collocation

aa—zl(t,x,Z )=L(u) + boundary/initial conditions
 Collocation: To satisfy governing equations at selected nodes

= Allow one to use existing deterministic codes repetitively

« Sampling: (solution statistics only)
* Random (Monte Carlo)
* Deterministic (lattice rule, tensor grid, cubature)

* Stochastic collocation: To construct polynomial approximations
= Node selection is critical to efficiency and accuracy
* More than sampling




Stochastic Collocation: Interpolation

%(1, x,Z)=L(u) + boundary/initial conditions

* Definition: Given a set of nodes and solution ensemble, find u,, in a proper
polynomial space, such that u,~u in a proper sense.

0
* Interpolation Approaches: , (2)=> u(Z’ )L.(Z)
j=1
L(Z)=6; 1<ij<Q

* Dimension-by-dimension space filling

Tensor grids: inefficient Sparse grids: more efficient

(Xiu & Hesthaven, SIAM J. Sci. Comput., 05)




Stochastic Computation: The Landscape

 Realistic Large-scale Complex Systems:
« Complex physics =» highly nonlinear systems
e Large number of random variables
* (Extremely) time consuming simulations
» Legacy codes (nearly impossible to re-write)

 Stochastic Galerkin:
* Difficult to implement
» Good mathematical properties

* Stochastic collocation is more proper:
* Easy to implement =» virtually no coding effort
* Nonlinearity poses no additional difficulties




Epistemic Uncertainty: Setup

%(r,x,Z) _L(v), Dx(0,T]xI,

* Governing Equation:

VN

B(v)=0, oD X[0,T]x1,
V=y,, Dx{t:O}X]Z

v(x,t,Z): Dx[0,T]1x1, =R I, cR’

* Epistemic uncertainty:
= Distribution of Z is not fully known

* “Some” prior knowledge:
[Z,. = [aﬂﬁi]’ —oo S < ff oo
d
I, C i>=<1 IZi

* Remark: Z; can be dependent, unbounded, and 7/, can be much smaller.




Encapsulation

* Goal: To “encapsulate” each variable
= For each Z; (potentially unbounded), find a bounded interval to
“capture” it.
» Requires modeling effort

* Overwhelming probability condition:

Foreach/, =|a;,B;], o, <p,, find a bounded interval
I, =[a,b], —eo<a,<b <o,

such that
Pr(Z el )<6,

where 6, >0, and /; is the difference set

I =1,A1, =(1, oI, \(I, NI,)

* If Z; 1s bounded, it is “easier” to do
* If Z. 1s unbounded, X; needs to be “big” enough




Encapsulation (cont’d)

« For each variable: {7 = . B8], —o<a <f <o

I, =la,b], —eo<a <b<oo

Pr(Z. eI, )<6,
) d
 For all variables: I, cxI,
i=1
d d
I, = .>_<1]X,~ = >_<1[al.,bl.]

I"'=1,0l,, I'=1,nl1,
I"=1,A1,=1"\1" (difference set)
* Overwhelming probability condition:

Pr(Z,el)<5, 6=1-(1-6)

* Reminder: /, may not overlap 7,




Encapsulation Problem

%(l‘,x,Z} =L(v), Dx(0,T]xI,

* Original Problem:

AN

B(v)=0, oD X[0,T]x1,
V=, Dx{t=0}x1,

"

%—I;l(t,x,X)zﬁ(u), Dx(0,Tx1,

* Encapsulation Problem:

.

B(u)=0, oD X[0,T]x1,
u=v,, Dx{t=0}x1,

o Solution in a hypercube:  u(x,t,X): Dx[0,T]xI, —» R
IX = [ai,bi]d(: [_191]d9= [Opl]d)

* Assumption: u-,&)=v(, &), Véel’




Solution Strategy of the Encapsulation Problem

M (1%, X)=L(w),  DX(0.TIxI,
* Encapsulation Problem: ot

N

B(u)=0, oD X[0,T]x1,
u=v,, Dx{t=0}x1,

* Solution strategy: Controllability on point-wise error

— 0, n—> oo

e, =u—u
nllre (1)

o u, 1s a good approximation in the entire domain /, (hypercube)

o Can “sample” u, accurately for all realizations

o No probability distribution 1s assigned in /.

o Convergence is a mathematical preference, not a practical necessity

* Requirement on error control is strong but achievable
o Sparse grid collocation (with sufficient regularity)
o Polynomial Galerkin (e.g., Chebyshev) methods are possible
o Without sufficient regularity --- multi-element approach




Solution “Statistics”

* Solution of the original problem:

v(,Z): 1, - R = [v(s)p,(s)ds
Iz
* Solution in the hypercube: I'=1,n1I,
u, (. X): 1, >R i, = [u,()p,(s)ds
7
Theorem: Assume v(Z) is bounded and let C, = Hv 1, Letu, be

an approximation to the solution of the encapsulation problem u(X), s.t.,

g, =|u-u, -
Then the approximation of the mean solution satisfies
u-p,|<e,+C, -0




Numerical Example

* Original Problem:

d’v dv dv

e — (1, Z)+V?+kv f cos(wt), v(0)=v,, E(()):vl
Z (j/ﬂk f wa 09 )e R6

* Encapsulation Problem:

2

du du
e (t X)+ XE+Xu—X cos( X, 1), u(0)= X, E(()):)(6

X=(X,.,X,)e [-1,1]°

o Solved by 6-dimensional sparse grid collocation for =20




Dependent Inputs

2

du du du
?(t=z)+21;+22”:ZscOS(ZJ)’ u0)= 2, 5(0)226

Z ~ beta(0.08,0.12,3,2), Z, ~ beta(0.08,0.1,1,1), Z, ~ uniform(0.45,0.55), independent

Z,=2/4+0.01,2,=10Z,,Z =(Z.—0.5)
10° T T T T T T T

e—e mean
10-'F m—mvar |1
102}
103}
104}
105}
106
107
108}
10}
10-°
10—11 =
10—1'2 =
10-8
10~}
10~

Relative Error

1 2 3 2 5 6 7 8 9
Approximation Order

* 4d problem is solved in 6d, without “cutoft”




Unbounded Inputs: Effect of “Cutott”
d’u

dr

(t,2)+Z, % +Zu=Z7Z.cos(Z), u(0)=2, %(0) =Z,

Gaussian: Z ~ N (0,C), C eR®® is the covariance matrix

I, = R, I, = [—a,a]’, then §>0

1

T 10 T
——35~10"1 ——35~10"1
——5~105 | o L ——5§~10'5]
—a—5~109 ) ——5~10'9
10
- . . . 9 _ 10 . . .
e e
i i
g 2 10°
s 10°} 3
14
10°
10°} " i )
10°
L 10°
"
"
10-8 | | L I T 107 L | L I
1 2 3 4 5 6 1 2 3 4 5
Approximation Order Approximation Order

Mean Variance




Mixed Aleatory and Epistemic Case

d*u du du
?(ZL,Z)‘FZIE‘FZJ/{:Z3COS(Z4f), u(O)=ZS, 5(0)226

* Aleatory: Z, ~beta(0,1,0,0), Z, = le /4+0.01,Z, ~beta(0,1,1,1), Z, ~ beta(0,1,2,1)
* Epistemic: Z,€[0.8,1.2], Z,e[-0.05,0.05]

1

0.9

Y
CDF of the aleatory RVs at 25 prescribed values of the epistemic variables

* Solution obtained by sparse grid collocation via simultaneous construction (5-d)




Epistemic Uncertainty: Think “QOutside the Box”

L 102 =L, DXOTIX,
* Original Problem:

N

B(v)=0, oD X[0,T]x1,
V=1, Dx{t=0}x1,

aa—j(t,x,X) =L(u), Dx(0,T]xI,
* Encapsulation Problem:

N

B(u)=0, oD X[0,T]x1,
u=v,, Dx{t=0}x1,

* Question: Does I, have to be a hyber-box?
v" No. I, can be unbounded too.
v Numerical solution can converge in L” norm. (More practical)
v’ Additional constraints on the measures are needed.




Reference:

e J. Jakeman, M. Eldred, D. Xiu, “Numerical Approach for
Quantification of Epistemic Uncertainty”, Journal of Computational
Physics, vol. 229, pp. 4648-4663, 2010.

* X. Chen, E.-J. Park, D. Xiu, Preprint, 2011.




Summary

= Uncertainty Analysis: To provide improved prediction
* Input characterization
 Uncertainty propagation
* Post processing

= Generalized polynomial chaos (gPC)
* Multivariate approximation theory

= Important directions:
* Approximation theory in HIGH dimensions
* Combination with data

= Data, any data, can help
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